给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。
示例 1:
输入: [1,2,3,4,5]
输出: true
示例 2:
输入: [5,4,3,2,1]
输出: false
==思路分析:==由于题目严格限制时间、空间,所以只能一边扫描。使用两个变量,分别保存[0,i]中第一小值、第二小值(初始值为INT_MAX)。
扫描数组
如果 num <= firstMin 更新firstNum,继续扫描
如果 num <= secondMIn 更新secondMin,继续扫描
返回true(因为三元递增序列成功找到
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
//firstMin用于存储[0, i]的最小值
//secondMin用于存储[0,i]的第二小的值
int firstMin = INT_MAX, secondMin = INT_MAX;
for (auto num : nums){//遍历数组
if (firstMin >= num){//优先更新第一小的值
firstMin = num;
}
else if (secondMin >= num){//再更新第二小的值
secondMin = num;
}
else{//否则大于第二小的值,说明递增三元子序列寻找成功
return true;
}
}
return false;
}
};